Title of article :
The Schur algorithm for generalized Schur functions III: J-unitary matrix polynomials on the circle
Author/Authors :
Daniel Alpay، نويسنده , , Tomas Azizov، نويسنده , , Aad Dijksma، نويسنده , , Heinz Langer، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
32
From page :
113
To page :
144
Abstract :
The main result is that for every J-unitary 2×2-matrix polynomial on the unit circle is an essentially unique product of elementary J-unitary 2×2-matrix polynomials which are either of degree 1 or 2k. This is shown by means of the generalized Schur transformation introduced in [Ann. Inst. Fourier 8 (1958) 211; Ann. Acad. Sci. Fenn. Ser. A I 250 (9) (1958) 1–7] and studied in [Pisot and Salem Numbers, Birkhäuser Verlag, Basel, 1992; Philips J. Res. 41 (1) (1986) 1–54], and also in the first two parts [Operator Theory: Adv. Appl. 129, Birkhäuser Verlag, Basel, 2000, p. 1; Monatshefte für Mathematik, in press] of this series. The essential tool in this paper are the reproducing kernel Pontryagin spaces associated with generalized Schur functions.
Keywords :
Generalized Schur algorithm , Generalized Schur functions , Kernels with negative squares , Reproducing kernel Pontryagin spaces , Elementary J -unitary matrix polynomials , Minimal factorizations
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
823985
Link To Document :
بازگشت