Title of article :
The intersection of the spectra of operator completions
Author/Authors :
Fang-Guo Ren، نويسنده , , Hong-Ke Du، نويسنده , , Huai-Xin Cao، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Pages :
7
From page :
103
To page :
109
Abstract :
Let A B(H), B B(K), C B(K,H), X B(H,K) and be an operator completion of the partial operator matrix . In this note, we consider the intersection of the spectra of MX when X runs over B(H,K). Denote by ∑(A,B,C) the set of scalar such that either (A−λ,C) or is not right invertible. We prove that where Δ(A,B,C) is the set of scalars such that R((A−λ,C))=H, , and ind(A−λ)+ind(B−λ)≠0. We also prove that the intersection is empty if and only if (A,C) and (B*,C*) are controllable.
Keywords :
Operator completion , Controllability , Operator matrix , Spectrum
Journal title :
Linear Algebra and its Applications
Serial Year :
2003
Journal title :
Linear Algebra and its Applications
Record number :
824031
Link To Document :
بازگشت