Title of article :
Embry truncated complex moment problem
Author/Authors :
Il Bong Jung، نويسنده , , EUNGIL KO، نويسنده , , Chunji Li، نويسنده , , Soon-Geol Kwon and Sang Soo Park، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2003
Abstract :
Let T be a cyclic subnormal operator on a Hilbert space with cyclic vector x0 and let γij:=(T*iTjx0,x0), for any . The Bram–Halmos’ characterization for subnormality of T involved a moment matrix M(n). In a parallel approach, we construct a moment matrix E(n) corresponding to Embry’s characterization for subnormality of T. We discuss the relationship between M(n) and E(n) via the full moment problem. Next, given a collection of complex numbers γ≡{γij} (0 i+j 2n, i−j n) with γ00>0 and , we consider the truncated complex moment problem for γ; this entails finding a positive Borel measure μ supported in the complex plane such that . We show that this moment problem can be solved when E(n) 0 and E(n) admits a flat extension E(n+k), where k=1 when n is odd and k=2 when n is even.
Keywords :
Truncated complex moment problem , Cyclic subnormal operators , k-Hyponormal operator
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications