Title of article :
Reduction theorems for groups of matrices Original Research Article
Author/Authors :
Janez Bernik، نويسنده , , Robert Guralnick ، نويسنده , , Mitja Mastnak، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
8
From page :
119
To page :
126
Abstract :
We show that if k is an algebraically closed field and G a not necessarily connected reductive linear algebraic group over k, then G(k) is solvable, nilpotent or abelian if and only if every finite subgroup of G(k) is solvable, nilpotent or abelian respectively. We also obtain the analogous result for compact subgroups of image.
Keywords :
Linear algebraic groups , Locally finite groups , Solvable , Abelian groups , Nilpotent
Journal title :
Linear Algebra and its Applications
Serial Year :
2004
Journal title :
Linear Algebra and its Applications
Record number :
824439
Link To Document :
بازگشت