Title of article :
The symmetric nonnegative inverse eigenvalue problem for 5 × 5 matrices Original Research Article
Author/Authors :
R. Loewy، نويسنده , , J.J. McDonald، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2004
Pages :
24
From page :
275
To page :
298
Abstract :
The symmetric nonnegative inverse eigenvalue problem (SNIEP) asks when a list σ=(λ1,λ2,…,λn) of n real numbers is the spectrum of an n×n symmetric nonnegative matrix. This problem is completely solved only for nless-than-or-equals, slant4. Our main goal here is to contribute to the solution of SNIEP for n=5. We also give a sufficient condition for a list σ to be realized as the spectrum of a symmetric positive matrix.
Keywords :
Extremematrix , Soules set , Symmetric nonnegative inverse eigenvalue problem , Extreme spectrum
Journal title :
Linear Algebra and its Applications
Serial Year :
2004
Journal title :
Linear Algebra and its Applications
Record number :
824640
Link To Document :
بازگشت