Title of article :
Siegel transformations for even characteristic Original Research Article
Author/Authors :
Erich W. Ellers، نويسنده , , Oliver Villa، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
12
From page :
163
To page :
174
Abstract :
Let V be a vector space over a field K of even characteristic and midKmid > 3. Suppose K is perfect and π is an element in the special orthogonal group SO(V) with dim B(π)=2d. Then π = ρ1 cdots, three dots, centered ρd−1κ, where ρj, j = 1 ,…, d − 1, are Siegel transformations and κ set membership, variant SO(V) with dim B(κ) = 2. The length of π with respect to the Siegel transformations is d if π is unipotent or if dim B (π)/rad B(π) greater-or-equal, slanted 4; otherwise it is d + 1.
Keywords :
Factorization , Siegel transformation , Orthogonal group , Quadratic form , Singular vector
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824670
Link To Document :
بازگشت