Title of article :
(±1)-Invariant sequences and truncated Fibonacci sequences Original Research Article
Author/Authors :
Gyoung-Sik Choi، نويسنده , , Suk-Geun Hwang، نويسنده , , Ik-Pyo Kim، نويسنده , , Bryan L. Shader، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
10
From page :
303
To page :
312
Abstract :
Let image and D=diag((−1)0, (−1)1, (−1)2, …). As a linear transformation of the infinite dimensional real vector space R∞ = (x0, x1, x2, …)T mid xi set membership, variant R for all i , PD has only two eigenvalues 1, −1. In this paper, we find some matrices associated with P whose columns form bases for the eigenspaces for PD. We also introduce truncated Fibonacci sequences and truncated Lucas sequences and show that these sequences span the eigenspaces of PD.
Keywords :
Invariant sequence , Truncated Fibonacci sequence , Truncated Lucas sequence
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824680
Link To Document :
بازگشت