Title of article :
Several observations on symplectic, Hamiltonian, and skew-Hamiltonian matrices Original Research Article
Author/Authors :
Heike Fassbender، نويسنده , , Kh.D. Ikramov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
15
From page :
15
To page :
29
Abstract :
We prove a Hamiltonian/skew-Hamiltonian version of the classical theorem relating strict equivalence and T-congruence between pencils of complex symmetric or skew-symmetric matrices. Then, we give a pure symplectic variant of the recent result of Xu concerning the singular value decomposition of a conjugate symplectic matrix. Finally, we discuss implications that can be derived from Veselić’s result on definite pairs of Hermitian matrices for the skew-Hamiltonian situation.
Keywords :
Skew-Hamiltonian matrix , Singular value decomposition , Hamiltonian matrix , Definite Hermitianpair , Conjugate symplectic matrix , Symplectic matrix , J-skew-Hermitian matrix , J-Hermitian matrix
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824760
Link To Document :
بازگشت