Title of article :
On Fiedler’s characterization of tridiagonal matrices over arbitrary fields Original Research Article
Author/Authors :
Américo Bento، نويسنده , , Ant?nio Leal Duarte، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
15
From page :
467
To page :
481
Abstract :
Fiedler proved in [Linear Algebra Appl. 2 (1969) 191–197] that the set of real n-by-n symmetric matrices A such that rank(A + D) greater-or-equal, slanted n − 1 for every real diagonal matrix D is the set of matrices PTPT where P is a permutation matrix and T an irreducible tridiagonal matrix. We show that this result remains valid for arbitrary fields with some exceptions for 5-by-5 matrices over image.
Keywords :
Tridiagonal matrices , Rank , finite fields , Fiedler property , Completions problems
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824810
Link To Document :
بازگشت