Title of article :
An affine eigenvalue problem on the nonnegative orthant Original Research Article
Author/Authors :
Vincent D. Blondel، نويسنده , , Laure Ninove، نويسنده , , Paul Van Dooren، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
In this paper, we consider the conditional affine eigenvalue problemimagewhere A is an n × n nonnegative matrix, b a nonnegative vector, and short parallel·short parallel a monotone vector norm. Under suitable hypotheses, we prove the existence and uniqueness of the solution (λ*, x*) and give its expression as the Perron root and vector of a matrix image, where c* has a maximizing property depending on the considered norm. The equation x = (Ax + b)/short parallelAx + bshort parallel has then a unique nonnegative solution, given by the unique Perron vector of image.
Keywords :
Nonnegative matrices , Perron vector , Spectral radius , Eigenvalue problem
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications