Title of article :
Nonnegative primitive matrices with exponent 2 Original Research Article
Author/Authors :
Byeong Moon Kim، نويسنده , , Byung Chul Song، نويسنده , , Woonjae Hwang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
7
From page :
162
To page :
168
Abstract :
A nonnegative matrix M with zero trace is primitive if for some positive integer k, Mk is positive. The exponent exp(M) of the primitive matrix is the smallest such k. By treating the digraph G whose adjacency matrix is the primitive matrix M, we will show that the minimum number of positive entries of M is 3n − 3 when exp(M) = 2. We will also show that for a symmetric n × n matrix M if exp(M) = 2, the minimum number of positive entries of M is 3n − 2 or 3n − 3 according to n.
Keywords :
Exponent , Primitive matrix
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824936
Link To Document :
بازگشت