Title of article :
The copositive completion problem
Author/Authors :
Leslie Hogben، نويسنده , , Michael I. Gekhtman and Charles R. Johnson، نويسنده , , Robert Reams، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
5
From page :
207
To page :
211
Abstract :
An n × n real symmetric matrix A is called (strictly) copositive if xTAx 0 (>0) whenever x Rn satisfies x 0 (x 0 and x ≠ 0). The (strictly) copositive matrix completion problem asks which partial (strictly) copositive matrices have a completion to a (strictly) copositive matrix. We prove that every partial (strictly) copositive matrix has a (strictly) copositive matrix completion and give a lower bound on the values used in the completion. We answer affirmatively an open question whether an n × n copositive matrix A = (aij) with all diagonal entries aii = 1 stays copositive if each off-diagonal entry of A is replaced by min{aij, 1}.
Keywords :
Copositive , Strictly copositive , Partial matrix , Matrix completion
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
824956
Link To Document :
بازگشت