Title of article :
The zrank conjecture and restricted Cauchy matrices
Author/Authors :
Guo-Guang Yan، نويسنده , , Arthur L.B. Yang، نويسنده , , Joan J. Zhou، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
15
From page :
371
To page :
385
Abstract :
The rank of a skew partition λ/μ, denoted rank(λ/μ), is the smallest number r such that λ/μ is a disjoint union of r border strips. Let sλ/μ(1t) denote the skew Schur function sλ/μ evaluated at x1 = = xt = 1, xi = 0 for i > t. The zrank of λ/μ, denoted zrank(λ/μ), is the exponent of the largest power of t dividing sλ/μ(1t). Stanley conjectured that rank(λ/μ) = zrank(λ/μ). We show the equivalence between the validity of the zrank conjecture and the nonsingularity of restricted Cauchy matrices. In support of Stanley’s conjecture we give affirmative answers for some special cases.
Keywords :
Interval sets , Restricted Cauchy matrix , Reduced code , Zrank , Rank , Border strip decomposition , Outside decomposition , Snakes
Journal title :
Linear Algebra and its Applications
Serial Year :
2005
Journal title :
Linear Algebra and its Applications
Record number :
825009
Link To Document :
بازگشت