Title of article :
A concavity inequality for symmetric norms
Author/Authors :
Jean-Christophe Bourin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
6
From page :
212
To page :
217
Abstract :
We review some recent convexity results for Hermitian matrices and we add a new one to the list: Let A be semidefinite positive, let Z be expansive, Z*Z I, and let f:[0,∞)→[0,∞) be a concave function. Then, for all symmetric norms f(Z*AZ) Z*f(A)Z .This inequality complements a classical trace inequality of Brown–Kosaki.
Keywords :
Hermitian operators , Eigenvalues , Operator inequalities , Jensen’s inequality
Journal title :
Linear Algebra and its Applications
Serial Year :
2006
Journal title :
Linear Algebra and its Applications
Record number :
825054
Link To Document :
بازگشت