Title of article :
Nonnegative matrix factorization for spectral data analysis
Author/Authors :
V. Paul Pauca، نويسنده , , T. J. Piper، نويسنده , , Robert J. Plemmons، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
19
From page :
29
To page :
47
Abstract :
Data analysis is pervasive throughout business, engineering and science. Very often the data to be analyzed is nonnegative, and it is often preferable to take this constraint into account in the analysis process. Here we are concerned with the application of analyzing data obtained using astronomical spectrometers, which provide spectral data, which is inherently nonnegative. The identification and classification of space objects that cannot be imaged in the normal way with telescopes is an important but difficult problem for tracking thousands of objects, including satellites, rocket bodies, debris, and asteroids, in orbit around the earth. In this paper, we develop an effective nonnegative matrix factorization algorithm with novel smoothness constraints for unmixing spectral reflectance data for space object identification and classification purposes. Promising numerical results are presented using laboratory and simulated datasets.
Keywords :
Nonnegative matrix factorization , Spectral data , Blind source separation , Data mining , Space object identification and classification
Journal title :
Linear Algebra and its Applications
Serial Year :
2006
Journal title :
Linear Algebra and its Applications
Record number :
825158
Link To Document :
بازگشت