Title of article :
Lower bounds for the minimum eigenvalue of Hadamard product of an M-matrix and its inverse Original Research Article
Author/Authors :
Hou-Biao Li، نويسنده , , Tingzhu Huang، نويسنده , , Shu-Qian Shen، نويسنده , , Hong Li، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
For the Hadamard product A ring operator A−1 of an M-matrix A and its inverse A−1, we give new lower bounds for the minimum eigenvalue of A ring operator A−1. These bounds are strong enough to prove the conjecture of Fiedler and Markham [An inequality for the Hadamard product of an M-matrix and inverse M-matrix, Linear Algebra Appl. 101 (1988) 1–8].
Keywords :
Hadamard product , Inverse , eigenvalue , Fiedler and Markham’s conjecture , M-matrix
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications