Title of article :
Matrix transformation and statistical convergence Original Research Article
Author/Authors :
Bruno de Malafosse، نويسنده , , Vladimir Rako?evi?، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
11
From page :
377
To page :
387
Abstract :
In this paper we will say that a sequence xk is λ, A-statistically convergent, if for every ε > 0,imagewith In = [n − λn + 1,n], where A is an infinite matrix and λ a strictly increasing sequence of positive numbers tending to infinity such that λ1 = 1 and λn+1 less-than-or-equals, slant λn + 1 for all n. Using the Banach algebra (w0(λ), w0(λ)) we get sufficient conditions to have a sequence λ, A−1- statistically convergent. Then we deduce conditions for a sequence to be λ, image- statistically convergent. Finally we get results in the cases when A is the operator C(μ) and the Cesàro operator.
Keywords :
A-statistical convergence , BK space , AK space , Matrix transformations , ? , Statistical convergence
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825419
Link To Document :
بازگشت