Title of article :
A Björck–Pereyra-type algorithm for Szegö–Vandermonde matrices based on properties of unitary Hessenberg matrices Original Research Article
Author/Authors :
Tom Bella، نويسنده , , Yuli Eidelman، نويسنده , , Israel Gohberg، نويسنده , , Israel Koltracht، نويسنده , , Vadim Olshevsky، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
14
From page :
634
To page :
647
Abstract :
In this paper we carry over the Björck-Pereyra algorithm for solving Vandermonde linear systems to what we suggest to call Szegö-Vandermonde systems VΦ(x), i.e., polynomial-Vandermonde systems where the corresponding polynomial system Φ is the Szegö polynomials. The properties of the corresponding unitary Hessenberg matrix allow us to derive a fast O(n2) computational procedure. We present numerical experiments that indicate that for ill-conditioned matrices the new algorithm yields better forward accuracy than Gaussian elimination.
Keywords :
Szeg? polynomials , Polynomial-Vandermonde matrices , Fast algorithms , Vandermonde matrices , Bjorck-pereyra algorithm , Unitary Hessenberg matrices
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825442
Link To Document :
بازگشت