Title of article :
Bounds on graph eigenvalues I Original Research Article
Author/Authors :
Vladimir Nikiforov، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
5
From page :
667
To page :
671
Abstract :
We improve some recent results on graph eigenvalues. In particular, we prove that if G is a graph of order n greater-or-equal, slanted 2, maximum degree Δ, and girth at least 5, thenimagewhere μ(G) is the largest eigenvalue of the adjacency matrix of G. Also, if G is a graph of order n greater-or-equal, slanted 2 with dominating number γ(G) = γ, thenimagewhere 0 = λ1(G) less-than-or-equals, slant λ2(G) less-than-or-equals, slant cdots, three dots, centered less-than-or-equals, slant λn(G) are the eigenvalues of the Laplacian of G. We also determine all cases of equality in the above inequalities.
Keywords :
Spectral radius , girth , Laplacian , Domination number
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825445
Link To Document :
بازگشت