Title of article :
On extremal matrices of second largest exponent by Boolean rank Original Research Article
Author/Authors :
Bolian Liu، نويسنده , , Lihua You، نويسنده , , Gexin Yu، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Abstract :
Let b = b(A) be the Boolean rank of an n × n primitive Boolean matrix A and exp(A) be the exponent of A. Then exp(A) less-than-or-equals, slant (b − 1)2 + 2, and the matrices for which equality occurs have been determined in [D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101–116]. In this paper, we show that for each 3 less-than-or-equals, slant b less-than-or-equals, slant n − 1, there are n × n primitive Boolean matrices A with b(A) = b such that exp(A) = (b − 1)2 + 1, and we explicitly describe all such matrices.
Keywords :
Boolean rank , Exponent , Primitive , Boolean matrix
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications