• Title of article

    On extremal matrices of second largest exponent by Boolean rank Original Research Article

  • Author/Authors

    Bolian Liu، نويسنده , , Lihua You، نويسنده , , Gexin Yu، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2007
  • Pages
    12
  • From page
    186
  • To page
    197
  • Abstract
    Let b = b(A) be the Boolean rank of an n × n primitive Boolean matrix A and exp(A) be the exponent of A. Then exp(A) less-than-or-equals, slant (b − 1)2 + 2, and the matrices for which equality occurs have been determined in [D.A. Gregory, S.J. Kirkland, N.J. Pullman, A bound on the exponent of a primitive matrix using Boolean rank, Linear Algebra Appl. 217 (1995) 101–116]. In this paper, we show that for each 3 less-than-or-equals, slant b less-than-or-equals, slant n − 1, there are n × n primitive Boolean matrices A with b(A) = b such that exp(A) = (b − 1)2 + 1, and we explicitly describe all such matrices.
  • Keywords
    Boolean rank , Exponent , Primitive , Boolean matrix
  • Journal title
    Linear Algebra and its Applications
  • Serial Year
    2007
  • Journal title
    Linear Algebra and its Applications
  • Record number

    825501