Title of article :
Eigenvalue inequalities for convex and log-convex functions Original Research Article
Author/Authors :
Jaspal Singh Aujla، نويسنده , , Jean-Christophe Bourin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2007
Pages :
11
From page :
25
To page :
35
Abstract :
We give a matrix version of the scalar inequality f(a + b) less-than-or-equals, slant f(a) + f(b) for positive concave functions f on [0, ∞). We show that Choi’s inequality for positive unital maps and operator convex functions remains valid for monotone convex functions at the cost of unitary congruences. Some inequalities for log-convex functions are presented and a new arithmetic–geometric mean inequality for positive matrices is given. We also point out a simple proof of the Bhatia–Kittaneh arithmetic–geometric mean inequality.
Keywords :
Convex function , eigenvalue , majorization , Unital positive linear map
Journal title :
Linear Algebra and its Applications
Serial Year :
2007
Journal title :
Linear Algebra and its Applications
Record number :
825595
Link To Document :
بازگشت