Title of article :
Matrices with prescribed Ritz values Original Research Article
Author/Authors :
Beresford Parlett، نويسنده , , Gilbert Strang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
15
From page :
1725
To page :
1739
Abstract :
On the way to establishing a commutative analog to the Gelfand–Kirillov theorem in Lie theory, Kostant and Wallach produced a decomposition of M(n) which we will describe in the language of linear algebra. The “Ritz values” of a matrix are the eigenvalues of its leading principal submatrices of order m=1,2,…,n. There is a unique unit upper Hessenberg matrix H with those eigenvalues. For real symmetric matrices with interlacing Ritz values, we extend their analysis to allow eigenvalues at successive levels to be equal. We also decide whether given Ritz values can come from a tridiagonal matrix.
Keywords :
eigenvalues , Principal submatrices , Interlacing , Hessenberg
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
825880
Link To Document :
بازگشت