Title of article :
Bounds for the Perron root using max eigenvalues Original Research Article
Author/Authors :
Ludwig Elsner، نويسنده , , P. van den Driessche، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
6
From page :
2000
To page :
2005
Abstract :
Using the techniques of max algebra, a new proof of Al’pin’s lower and upper bounds for the Perron root of a nonnegative matrix is given. The bounds depend on the row sums of the matrix and its directed graph. If the matrix has zero main diagonal entries, then these bounds may improve the classical row sum bounds. This is illustrated by a generalized tournament matrix.
Keywords :
Perron root , Max eigenvalue , Irreducibility , Nonnegative matrix
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
825903
Link To Document :
بازگشت