Title of article :
Common non-trivial invariant closed cones for commuting contractions Original Research Article
Author/Authors :
A. Fern?ndez Valles، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
6
From page :
2955
To page :
2960
Abstract :
Let T=(T1,…,TN) be a system of N commuting contractions defined on a infinite dimensional separable Hilbert space H. In this article, we will prove that if image, where σHe(T) denotes the essential Harte spectrum of T and image the unit politorus, respectively, then there exists a non-trivial cone C invariant for each contraction Tj;jset membership, variant{1,…,N}. This result complements recent results of Tsatsomeros and co-workers [Roderick Edwards, Judith J. McDonald, Michael J. Tsatsomeros, On matrices with common invariant cones with applications in neural and gene networks, Linear Algebra Appl. 398 (2005) 37–67; Michael Tsatsomeros, A criterion for the existence of common invariant subspaces of matrices, Linear Algebra Appl. 322 (1–3) (2001) 51–59].
Keywords :
N-tuples of operators , Common invariant closed cones
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
825972
Link To Document :
بازگشت