• Title of article

    Highly symmetric generalized circulant permutation matrices Original Research Article

  • Author/Authors

    M. Abreu، نويسنده , , D. Labbate، نويسنده , , R. Salvi، نويسنده , , N. Zagaglia Salvi، نويسنده ,

  • Issue Information
    روزنامه با شماره پیاپی سال 2008
  • Pages
    9
  • From page
    367
  • To page
    375
  • Abstract
    In this paper we investigate generalized circulant permutation matrices of composite order. We give a complete characterization of the order and the structure of symmetric generalized k-circulant permutation matrices in terms of circulant and retrocirculant block (0, 1)-matrices in which each block contains exactly one or two entries 1. In particular, we prove that a generalized k-circulant matrix A of composite order n = km is symmetric if and only if either k = m − 1 or k ≡ 0 or k ≡ 1 mod m, and we obtain three basic symmetric generalized k-circulant permutation matrices, from which all others are obtained via permutations of the blocks or by direct sums. Furthermore, we extend the characterization of these matrices to centrosymmetric matrices.
  • Keywords
    Generalized circulant matrix , Centrosymmetric matrix , Block circulant matrix , Persymmetric matrix
  • Journal title
    Linear Algebra and its Applications
  • Serial Year
    2008
  • Journal title
    Linear Algebra and its Applications
  • Record number

    826007