Title of article :
The exact number of conjugacy classes of the Sylow p-subgroups of GL(n,q) modulo (q-1)13 Original Research Article
Author/Authors :
A. Vera-L?pez، نويسنده , , J.M. Arregi، نويسنده , , Leyre Ormaetxea، نويسنده , , F.J. Vera-L?pez، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
8
From page :
617
To page :
624
Abstract :
Let G be a finite p-group of order pn. A well known result of P. Hall determines the number of conjugacy classes of G,r(G), modulo (p2-1)(p-1). Namely, he proved the existence of a non-negative constant k such that r(G)=n(p2-1)+pe+k(p2-1)(p-1). We denote by image the group of the upper unitriangular matrices over image, the finite field with q=pt elements. In [A. Vera-López, J. M. Arregi and F. J. Vera-López. On the number of Conjugacy Classes of the Sylow p-subgroups of GL(n,q). Bull. Austral. Math. Soc 53,(1996), 431-439.] the number image is given modulo (q-1)5. In this paper, we introduce the concept of primitive canonical matrix. The knowledge of the number of primitive canonical matrices with connected graph of size less than or equal to n should be sufficient to determine the number of all canonical matrices of size n. Moreover, we give explicitly the polynomial formulas μi=μi(n),i=0,…,12, depending only on n, and not on q, such thatimage
Keywords :
Unitriangular matrices , Higman’s conjecture , p-groups
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
826024
Link To Document :
بازگشت