Title of article :
All-derivable points in the algebra of all upper triangular matrices Original Research Article
Author/Authors :
Jun Zhu، نويسنده , , Changping Xiong، نويسنده , , Renyuan Zhang، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
15
From page :
804
To page :
818
Abstract :
Let image be the algebra of all n×n upper triangular matrices. We say that an element image is an all-derivable point of image if every derivable linear mapping φ at G (i.e. φ(ST)=φ(S)T+Sφ(T) for any image with ST=G) is a derivation. In this paper we show that image is an all derivable point of image if and only if G≠0.
Keywords :
All-derivable point , Nest algebra , Derivable linear mapping at G
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
826038
Link To Document :
بازگشت