Title of article :
An upper bound for the minimum rank of a graph Original Research Article
Author/Authors :
Avi Berman، نويسنده , , Shmuel Friedland and Uri N. Peled، نويسنده , , Leslie Hogben، نويسنده , , Uriel G. Rothblum، نويسنده , , Bryan Shader، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Abstract :
For a graph G of order n, the minimum rank of G is defined to be the smallest possible rank over all real symmetric n×n matrices A whose (i,j)th entry (for i≠j) is nonzero whenever {i,j} is an edge in G and is zero otherwise. We prove an upper bound for minimum rank in terms of minimum degree of a vertex is valid for many graphs, including all bipartite graphs, and conjecture this bound is true over for all graphs, and prove a related bound for all zero-nonzero patterns of (not necessarily symmetric) matrices. Most of the results are valid for matrices over any infinite field, but need not be true for matrices over finite fields.
Keywords :
graph , matrix , Minimum rank , Maximum nullity , Delta conjecture , Minimum degree , Rank
Journal title :
Linear Algebra and its Applications
Journal title :
Linear Algebra and its Applications