Title of article :
Two new classes of hyperplanes of the dual polar space DH(2n-1,4) not arising from the Grassmann embedding Original Research Article
Author/Authors :
Bart De Bruyn، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
16
From page :
2030
To page :
2045
Abstract :
Let Γn(q) denote the geometry of the hyperbolic lines of the symplectic polar space W(2n-1,q),ngreater-or-equal, slanted2. We show that every hyperplane of Γn(q) gives rise to a hyperplane of the Hermitian dual polar space DH(2n-1,q2). In this way we obtain two new classes of hyperplanes of DH(2n-1,4) which do not arise from the Grassmann embedding of DH(2n-1,4).
Keywords :
Symplectic polarspace , Hyperbolic line , Hermitian dual polar space , Universal embedding , Grassmann embedding , Hyperplane
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
826125
Link To Document :
بازگشت