Title of article :
A lower bound for the Laplacian eigenvalues of a graph—Proof of a conjecture by Guo Original Research Article
Author/Authors :
Andries E. Brouwer، نويسنده , , Willem H. Haemers، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2008
Pages :
5
From page :
2131
To page :
2135
Abstract :
We show that if μj is the jth largest Laplacian eigenvalue, and dj is the jth largest degree (1less-than-or-equals, slantjless-than-or-equals, slantn) of a connected graph Γ on n vertices, then μjgreater-or-equal, slanteddj-j+2(1less-than-or-equals, slantjless-than-or-equals, slantn-1). This settles a conjecture due to Guo.
Keywords :
Laplacian eigenvalues , graphs
Journal title :
Linear Algebra and its Applications
Serial Year :
2008
Journal title :
Linear Algebra and its Applications
Record number :
826133
Link To Document :
بازگشت