Title of article :
Lucas/Kanade Meets Horn/Schunck: Combining Local and Global Optic Flow Methods
Author/Authors :
ANDR´ES BRUHN AND JOACHIM WEICKERT، نويسنده , , CHRISTOPH SCHNO¨ RR، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
21
From page :
211
To page :
231
Abstract :
Differential methods belong to the most widely used techniques for optic flow computation in image sequences. They can be classified into local methods such as the Lucas-Kanade technique or Big¨un’s structure tensor method, and into global methods such as the Horn/Schunck approach and its extensions. Often local methods are more robust under noise, while global techniques yield dense flow fields. The goal of this paper is to contribute to a better understanding and the design of novel differential methods in four ways: (i) We juxtapose the role of smoothing/regularisation processes that are required in local and global differential methods for optic flow computation. (ii) This discussion motivates us to describe and evaluate a novel method that combines important advantages of local and global approaches: It yields dense flowfields that are robust against noise. (iii) Spatiotemporal and nonlinear extensions as well as multiresolution frameworks are presented for this hybrid method. (iv)We propose a simple confidence measure for optic flow methods that minimise energy functionals. It allows to sparsify a dense flow field gradually, depending on the reliability required for the resulting flow. Comparisons with experiments from the literature demonstrate the favourable performance of the proposed methods and the confidence measure.
Keywords :
optic flow , differential techniques , structure tensor , partial differential equations , confidence measures , Performance evaluation , variational methods
Journal title :
INTERNATIONAL JOURNAL OF COMPUTER VISION
Serial Year :
2005
Journal title :
INTERNATIONAL JOURNAL OF COMPUTER VISION
Record number :
828108
Link To Document :
بازگشت