Abstract :
Based on recent work on Stochastic Partial Differential Equations (SPDEs), this paper presents a simple
and well-founded method to implement the stochastic evolution of a curve. First, we explain why great care should
be taken when considering such an evolution in a Level Set framework. To guarantee the well-posedness of the
evolution and to make it independent of the implicit representation of the initial curve, a Stratonovich differential
has to be introduced. To implement this differential, a standard Ito plus drift approximation is proposed to turn an
implicit scheme into an explicit one. Subsequently, we consider shape optimization techniques, which are a common
framework to address various applications in Computer Vision, like segmentation, tracking, stereo vision etc. The
objective of our approach is to improve these methods through the introduction of stochastic motion principles.
The extension we propose can deal with local minima and with complex cases where the gradient of the objective
function with respect to the shape is impossible to derive exactly. Finally, as an application, we focus on image
segmentation methods, leading to what we call Stochastic Active Contours.
Keywords :
level sets , Stochastic partial differential equations , Shape optimization , Stochastic optimization , segmentation , active contours