Author/Authors :
V. H. L ´OPEZ، نويسنده , , A. R. KENNEDY?، نويسنده ,
Abstract :
This study details trials to produce aluminium metal matrix composites reinforced with TiC
particles by means of a flux-assisted infiltration technique. Whilst no infiltration of TiC beds
occurred, by using a K-Al-F flux infiltration was successful at temperatures as low as 680◦C.
Some reaction of TiC with the Al matrix, forming TiAl2.3Si0.1 and Al4C3, was observed in the
microstructure along with flux trapped within the Al-6063 matrix. DSC showed exothermic
oxidation of TiC to occur, until the flux melts at 545◦C arresting and preventing further
oxidation by spreading over, coating and cleaning the particle surfaces. As soon as the flux
melts, it also starts dissolving the oxide layer on the Al alloy and prevents any re-oxidation
by isolating the surface from the surrounding atmosphere. Sessile drop experiments
suggest that when the alloy melts and the oxide layer has been dissolved by the flux,
intimate contact occurs between the liquid and the particles. The low tensions for the
solid/flux and liquid metal/flux interfaces facilitates spreading and wetting of liquid Al on
the TiC particles, followed by infiltration of the bed and the displacement of the flux to the
outer surfaces of the sample. C 2005 Springer Science + Business Media, Inc.