Title of article :
A mechanical model for creep, recovery and stress relaxation in polymeric materials
Author/Authors :
KEVIN S. FANCEY، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Pages :
5
From page :
4827
To page :
4831
Abstract :
A mechanical model is presented, in which viscoelastic response is described by the action of time-dependent latch elements. The model represents viscoelastic changes occurring through incremental jumps as opposed to continuous motion. This is supported by the observation that polymeric creep, recovery and stress relaxation can be correlated with stretched exponential functions, i.e. Weibull and Kohlrausch-Williams-Watts, since (i) the former is also used in reliability engineering to represent the failure of discrete elements and (ii) there is evidence of the latter being an approximation to the Eyring potential energy barrier relationship, which describes motion in terms of molecular jumps. C 2005 Springer Science + Business Media, Inc.
Journal title :
Journal of Materials Science
Serial Year :
2005
Journal title :
Journal of Materials Science
Record number :
830201
Link To Document :
بازگشت