Title of article :
Fracture and failure behavior of basalt fiber
mat-reinforced vinylester/epoxy hybrid resins as a
function of resin composition and fiber surface
treatment
Author/Authors :
T. CZIGA´ NY?، نويسنده , , K. PO¨ LO¨ SKEI، نويسنده , , J. KARGER-KOCSIS، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2005
Abstract :
The mechanical and failure behaviour of basalt fiber (BF) mat-reinforced (30 wt%)
composites with vinylester (VE) and vinylester/epoxy (VE/EP) hybrid resins were studied as
a function of resin hybridization (VE/EP = 3/1, 1/1 and 1/3) and BF surface treatment. BF was
treated either with vinyl or epoxy functionalized organosilanes (VS and ES, respectively).
The VE/EP hybrids exhibited an interpenetrating network (IPN) structure in the studied
composition range. Specimens, cut of plaques produced by resin transfer molding (RTM),
were subjected to static (tensile, flexural) and dynamic (instrumented Charpy and falling
weight impact) loading. The fracture toughness was determined under both static and
dynamic conditions. The development of the damage zone and its propagation were
followed by location of the acoustic emission (AE). It was found that the mechanical
properties of the composites were strongly improved when mats with treated BF surface
were incorporated. This was mostly traced to the good interfacial adhesion between the BF
and matrix according to fractographic inspection. The formation of the interphase (ca. 2 μm
thick) was influenced by the BF treatment: VS coating of the BF resulted in VE-, whereas
ES-treatment in EP-enrichment in the interphase due to which the IPN structure also
changed locally. This was demonstrated by nanoindentation measurements performed
with an atomic force microscopy (AFM) on ion-ablated polished surface specimens.
C 2005 Springer Science + Business Media, Inc.
Journal title :
Journal of Materials Science
Journal title :
Journal of Materials Science