Title of article :
A Semi-Supervised Method for Multimodal Classification of Consumer Videos
Author/Authors :
Karimian، Mahmood نويسنده Department of Computer Engineering , , Tavassolipour، Mostafa نويسنده Department of Computer Engineering , , Kasaei، Shohreh نويسنده ,
Issue Information :
فصلنامه با شماره پیاپی 17 سال 2012
Pages :
8
From page :
19
To page :
26
Abstract :
In large databases, lack of labeled training data leads to major difficulties in classification process. Semi-supervised algorithms are employed to suppress this problem. Video databases are the epitome for such a scenario. Fortunately, graph-based methods have shown to form promising platforms for semi-supervised video classification. Based on multimodal characteristics of video data, different features (SIFT, STIP, and MFCC) have been utilized to build the graph. In this paper, we have proposed a new classification method which fuses the results of manifold regularization over different graphs. Our method acts like a co-training method that tries to find the correct label for unlabeled data during its iterations. But, unlike other co-training methods, it takes into account the unlabeled data in the classification process. After manifold regularization, data fusion is doneby a ranking method which improves the algorithm to become competitive with supervised methods. Our experimental results, run on the CCV database, show the efficiency of the proposed classification method.
Journal title :
International Journal of Information and Communication Technology Research
Serial Year :
2012
Journal title :
International Journal of Information and Communication Technology Research
Record number :
831757
Link To Document :
بازگشت