Title of article :
Preparation and electrochemical characteristics of microemulsion-derived Li(Ni, Co)O2 nanopowders
Author/Authors :
Chung-Hsin Lu، نويسنده , , Hsien-Cheng Wang، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2007
Pages :
7
From page :
752
To page :
758
Abstract :
Nanosized LiNi0.9Co0.1O2 powders used in lithium-ion batteries are successfully prepared via a water-in-oil microemulsion process. The average particle sizes of the microemulsion-derived LiNi0.9Co0.1O2 powders are in nanometer scale. The obtained powders are much smaller in size than the specimens prepared via the conventional solid state and sol–gel processes. Oxygen has significant enhancement effects on the cationic ordering of the calcined powders. Highly cation-ordered LiNi0.9Co0.1O2 powders with a layered R 3m structure are obtained after heat-treatment at 800 C in O2. In addition, the high intensity ratio of I003/I104 reveals that lithium ions and transition metal ions are regularly situated at the 3a and 3b sites, respectively, rendering the high cationic ordering. The discharge capacity of the first cycle for the specimen calcined at 800 C in O2 is 170.9 mAh/g. After 20 cycles, the capacity retention of LiNi0.9Co0.1O2 powders is 93.2%, indicating that LiNi0.9Co0.1O2 powders with good cycling characteristics are obtained via the microemulsion process.
Journal title :
Journal of Materials Science
Serial Year :
2007
Journal title :
Journal of Materials Science
Record number :
832447
Link To Document :
بازگشت