Title of article
Le probleme dAnscombe pour les lois binomiales negatives generalisees
Author/Authors
Kokonendji، C. C. نويسنده ,
Issue Information
روزنامه با شماره پیاپی سال 1999
Pages
-198
From page
199
To page
0
Abstract
Consider a finite sample from a generalized negative-binomial distribution where both (canonical and index) parameters are unknown. This note proves that both the maximum-likelihood estimate and the moment estimate of the index parameter exist if and only if the sample variance is greater than the sample mean. This extends a result for the negative-binomial distribution that had been conjectured by Anscombe (1950) and later shown by Levin and Reeds (1977).
Keywords
Exponential dispersion models , Maximum-likelihood estimate , moment estimate , generalized negative-binomial distributions , unit-variance function , variation-diminishing
Journal title
CANADIAN JOURNAL OF STATISTICS
Serial Year
1999
Journal title
CANADIAN JOURNAL OF STATISTICS
Record number
83271
Link To Document