Title of article :
Nanocrystallization of Fe73.5Si13.5B9Nb3Cu1 soft-magnetic alloy from amorphous precursor in a magnetic field
Author/Authors :
Hiromichi Fujii، نويسنده , , Victoria A. Yardley، نويسنده , , Takashi Matsuzaki، نويسنده , , Sadahiro Tsurekawa، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
11
From page :
3837
To page :
3847
Abstract :
The effect of a magnetic field on the nature of nanocrystallization from a melt-spun Fe73.5Si13.5B9Nb3Cu1 amorphous precursor has been studied with the aim of controlling microstructures and magnetic properties. Annealing for magnetic crystallization was carried out at temperatures between the Curie temperature of the amorphous phase (586 K) and that of the crystalline phase (920 K). It was found that the {110} texture component in crystallized a-Fe(Si) phase increased in importance with increasing magnetic-field strength. An X-ray diffraction analysis based on the Shultz method revealed that the magnetic field caused preferential formation of {110}- oriented nuclei. In addition, the applied field enhanced crystallization kinetics, particularly the nucleation rate. No significant difference in grain growth behavior was observed as a result of applying a magnetic field. We therefore conclude that the development of the {110} texture by magnetic crystallization is predominantly attributable to preferential nucleation, rather than preferential growth, of {110}-oriented nuclei. The saturation magnetization of nanocrystallized specimens, evaluated using a vibrating sample magnetometer (VSM), was increased by the application of a magnetic field up to 4T during nanocrystallization.
Journal title :
Journal of Materials Science
Serial Year :
2008
Journal title :
Journal of Materials Science
Record number :
834343
Link To Document :
بازگشت