Title of article :
High-cycle fatigue of hybrid carbon nanotube/glass fiber/polymer composites
Author/Authors :
Christopher S. Grimmer، نويسنده , , C. K. H. Dharan، نويسنده ,
Issue Information :
دوهفته نامه با شماره پیاپی سال 2008
Pages :
6
From page :
4487
To page :
4492
Abstract :
Glass fiber polymer composites have high strength, low cost, but suffer from poor performance in fatigue. Mechanisms for high-cycle ([104 cycles) fatigue failure in glass fiber composites consist primarily of matrixdominated damage accumulation and growth that coalesce and propagate into the fibers resulting in ultimate fatigue failure. This investigation shows that the addition of small volume fractions of multi-walled carbon nanotubes (CNTs) in the matrix results in a significant increase in the highcycle fatigue life. Cyclic hysteresis measured over each cycle in real time during testing is used as a sensitive indicator of fatigue damage. We show that hysteresis growth with cycling is suppressed when CNTs are present with resulting longer cyclic life. Incorporating CNTs into the matrix tends to inhibit the formation of large cracks since a large density of nucleation sites are provided by the CNTs. In addition, the increase in energy absorption from the fracture of nanotubes bridging across nanoscale cracks and nanotube pull-out from the matrix is thought to contribute to the higher fatigue life of glass composites containing CNTs. High-resolution scanning electron microscopy suggests possible mechanisms for energy absorption including nanotube pull-out and fracture. The distributed nanotubes in the matrix appear to inhibit damage propagation resulting in overall improved fatigue strength and durability.
Journal title :
Journal of Materials Science
Serial Year :
2008
Journal title :
Journal of Materials Science
Record number :
834427
Link To Document :
بازگشت