Title of article :
Decomposition rank and absorbing extensions of type I algebras
Author/Authors :
D. Kucerovsky، نويسنده , , P.W. Ng، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
12
From page :
25
To page :
36
Abstract :
We prove the following: Let A and B be separable C∗-algebras. Suppose that B is a type I C∗-algebra such that (i) B has only infinite dimensional irreducible ∗-representations, and (ii) B has finite decomposition rank. If 0 → B → C → A → 0 is a unital homogeneous exact sequence with Busby invariant , then the extension is absorbing. In the case of infinite decomposition rank, we provide a counterexample. Specifically, we construct a unital, homogeneous, split exact sequence of the form 0 → C(Z) ⊗K→ C → C → 0which is not absorbing. In this example, Z is an infinite-dimensional, compact, second countable topological space. This gives a counterexample to the natural infinite-dimensional generalization of the result of Pimsner, Popa and Voiculescu. © 2004 Elsevier Inc. All rights reserved.
Keywords :
Absorbing extensions , C?-algebras
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
838873
Link To Document :
بازگشت