Title of article :
Singular perturbations of abstract wave equations
Author/Authors :
Andrea Posilicano، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Given, on the Hilbert space H0, the self-adjoint operator B and the skew-adjoint operators
C1 and C2, we consider, on the Hilbert space H D(B) ⊕H0, the skew-adjoint operator
W =
C2 1
−B2 C1
corresponding to the abstract wave equation ¨ − (C1 + C2) ˙ =−(B2 + C1C2) . Given then
an auxiliary Hilbert space h and a linear map : D(B2) → h with a kernel K dense in H0,
we explicitly construct skew-adjoint operators W on a Hilbert space H D(B) ⊕H0 ⊕ h
which coincide with W on N K⊕ D(B). The extension parameter ranges over the set
of positive, bounded and injective self-adjoint operators on h.
In the case C1 = C2 = 0 our construction allows a natural definition of negative (strongly)
singular perturbations A of A := −B2 such that the diagram
W −−−−−−→ W
A −−−−−−→ A
is commutative.
© 2005 Elsevier Inc. All rights reserved.
Keywords :
Singular perturbations , Self-adjoint extensions , Wave equations
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis