Title of article :
Spectral shift function and resonances for
slowly varying perturbations of periodic
Schrödinger operators
Author/Authors :
Mouez Dimassi، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
We study the spectral shift function s( , h) and the resonances of the operator P(h)=− +
V (x) + W(hx). Here V is a periodic potential, W a decreasing perturbation and h a small
positive constant. We give a representation of the derivative of s( , h) related to the resonances
of P(h), and we obtain a Weyl-type asymptotics of s( , h). We establish an upper bound
O(h−n+1) for the number of the resonances of P(h) lying in a disk of radius h.
© 2005 Elsevier Inc. All rights reserved.
Keywords :
Spectral shift function , Resonances , Periodic Hamiltonian , Trace formula , Semi-classicalasymptotics
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis