Title of article :
Symmetric kernel of Rademacher multiplicator spaces
Author/Authors :
Serguei V. Astashkin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Pages :
20
From page :
173
To page :
192
Abstract :
Let X be a rearrangement invariant (r.i.) function space on [0,1]. We consider the Rademacher multiplicator space (R,X) of measurable functions x such that xh ∈ X for every a.e. converging series h= anrn ∈ X, where (rn) are the Rademacher functions. We show that for a broad class of r.i. spaces X, the space (R,X) is not r.i. In this case, we identify the symmetric kernel Sym (R,X) of the Rademacher multiplicator space and study when Sym (R,X) reduces to L∞. In the opposite direction, we find new examples of r.i. spaces for which (R,X) is r.i. We consider in detail the case when X is a Marcinkiewicz or an exponential Orlicz space. © 2005 Elsevier Inc. All rights reserved.
Keywords :
K-functional , Interpolation of operators , Rearrangement invariant space , Marcinkiewicz spaces , Rademacher functions , Orlicz spaces
Journal title :
Journal of Functional Analysis
Serial Year :
2005
Journal title :
Journal of Functional Analysis
Record number :
838967
Link To Document :
بازگشت