Title of article :
Symmetric kernel of Rademacher multiplicator
spaces
Author/Authors :
Serguei V. Astashkin، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2005
Abstract :
Let X be a rearrangement invariant (r.i.) function space on [0,1]. We consider the Rademacher
multiplicator space (R,X) of measurable functions x such that xh ∈ X for every a.e. converging
series h= anrn ∈ X, where (rn) are the Rademacher functions. We show that for a broad
class of r.i. spaces X, the space (R,X) is not r.i. In this case, we identify the symmetric
kernel Sym (R,X) of the Rademacher multiplicator space and study when Sym (R,X) reduces
to L∞. In the opposite direction, we find new examples of r.i. spaces for which (R,X) is
r.i. We consider in detail the case when X is a Marcinkiewicz or an exponential Orlicz space.
© 2005 Elsevier Inc. All rights reserved.
Keywords :
K-functional , Interpolation of operators , Rearrangement invariant space , Marcinkiewicz spaces , Rademacher functions , Orlicz spaces
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis