Title of article :
Capacité et inégalité de Faber–Krahn dans Rn
Author/Authors :
J. Bertrand، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
28
From page :
1
To page :
28
Abstract :
In this paper, we define a new capacity which allows us to control the behaviour of the Dirichlet spectrum of a compact Riemannian manifold with boundary, with “small” subsets (which may intersect the boundary) removed. This result generalises a classical result of Rauch and Taylor (“the crushed ice theorem”). In the second part, we show that the Dirichlet spectrum of a sequence of bounded Euclidean domains converges to the spectrum of a ball with the same volume, if the first eigenvalue of these domains converges to the first eigenvalue of a ball
Keywords :
Capacity , Eigenvalue estimates , Convergence of the spectrum
Journal title :
Journal of Functional Analysis
Serial Year :
2006
Journal title :
Journal of Functional Analysis
Record number :
839055
Link To Document :
بازگشت