Abstract :
We define a cyclic cocycle which corresponds to the piecewise linear Godbillon–Vey class of Ghys
and Sergiescu [E. Ghys, V. Sergiescu, Sur un groupe remarquable de difféomorphismes du cercle, Comment.
Math. Helv. 62 (1987) 185–239]. Using Connes’s pairing [A. Connes, Non-commutative differential
geometry. Part II: De Rham homology and noncommutative algebra, Publ. Math. Inst. Hautes Études Sci.
62 (1985) 257–360; A. Connes, Cyclic cohomology and the transverse fundamental class of a foliation,
in: H. Araki, G. Effros (Eds.), Geometric Methods in Operator Algebras, Pitman Res. Notes Math. Ser.,
vol. 123, Longman, Harlow, 1986, pp. 52–144] between cyclic cohomology and K-theory, we then evaluate
this cocycle on a suitable K-theory class and obtain a nontrivial result, for foliations of the 3-torus by slope
components.
2006 Elsevier Inc. All rights reserved.
Keywords :
Foliations , C?-algebras , K-theory , Godbillon–Vey invariant , Piecewise linear homeomorphisms