Title of article :
Lyapunov exponent for the parabolic
Anderson model in Rd ✩
Author/Authors :
Dmitry V. Yakubovich، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
We consider the asymptotic almost sure behavior of the solution of the equation
u(t, x) = u0(x) +
κ
2
t 0
u(s, x) ds +
t 0
u(s, x)∂Wx (s),
where {Wx : x ∈ Rd } is a field of Brownian motions. In fact, we establish existence of the Lyapunov
exponent, λ(κ) = limt→∞
1
t log u(t, x). We also show that c1κ1/3 λ(κ) c2κ1/5 as κ 0 under the
assumption that the correlation function of the background field {Wx : x ∈ Rd } is Cβ for 1<β 2.
© 2006 Elsevier Inc. All rights reserved
Keywords :
Parabolic Anderson model , Feynman–Kac formula , Lyapunov exponent , Block argument
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis