Title of article :
Smoothing and dispersive estimates for 1D Schrödinger equations with BV coefficients and applications
Author/Authors :
Nicolas Burq، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
34
From page :
265
To page :
298
Abstract :
We prove smoothing estimates for Schrödinger equations i∂tφ +∂x(a(x)∂xφ) = 0 with a(x) ∈ BV, real and bounded from below. We then bootstrap these estimates to obtain optimal Strichartz and maximal function estimates, all of which turn out to be identical to the constant coefficient case. We also provide counterexamples showing a ∈ BV to be in a sense a minimal requirement. Finally, we provide an application to sharp well-posedness for a generalized Benjamin–Ono equation. © 2006 Elsevier Inc. All rights reserved.
Keywords :
Bounded variations , Benjamin–Ono equation , Dispersive estimates
Journal title :
Journal of Functional Analysis
Serial Year :
2006
Journal title :
Journal of Functional Analysis
Record number :
839138
Link To Document :
بازگشت