Title of article :
On the super fixed point property in product spaces
Author/Authors :
Andrzej Wi´snicki، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
10
From page :
447
To page :
456
Abstract :
We prove that if F is a finite-dimensional Banach space and X has the super fixed point property for nonexpansive mappings, then F ⊕ X has the super fixed point property with respect to a large class of norms including all lp norms, 1 p <∞. This provides a solution to the “super-version” of the problem of Khamsi (1989). © 2006 Elsevier Inc. All rights reserved
Keywords :
Direct sum , Super fixed point property , Superreflexive space , Product space , Nonexpansive mapping
Journal title :
Journal of Functional Analysis
Serial Year :
2006
Journal title :
Journal of Functional Analysis
Record number :
839144
Link To Document :
بازگشت