Title of article :
Lowest Landau level functional and Bargmann spaces
for Bose–Einstein condensates
Author/Authors :
A. Aftalion، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Abstract :
A fast rotating Bose–Einstein condensate can be described by a complex valued wave function minimizing
an energy restricted to the lowest Landau level or Fock–Bargmann space. Using some structures
associated with this space, we study the distribution of zeroes of the minimizer and prove in particular that
the number of zeroes is infinite. We relate their location to the combination of two problems: a confining
problem producing an inverted parabola profile and the Abrikosov problem of minimizing an energy on a
lattice, using Theta functions.
© 2006 Elsevier Inc. All rights reserved.
Keywords :
Semi-classical analysis , Pseudo-differential calculus , Theta functions , Abrikosov lattice , Bose–Einstein condensates , Bargmann spaces , Bargmann transform
Journal title :
Journal of Functional Analysis
Journal title :
Journal of Functional Analysis