Title of article :
Lowest Landau level functional and Bargmann spaces for Bose–Einstein condensates
Author/Authors :
A. Aftalion، نويسنده ,
Issue Information :
روزنامه با شماره پیاپی سال 2006
Pages :
42
From page :
661
To page :
702
Abstract :
A fast rotating Bose–Einstein condensate can be described by a complex valued wave function minimizing an energy restricted to the lowest Landau level or Fock–Bargmann space. Using some structures associated with this space, we study the distribution of zeroes of the minimizer and prove in particular that the number of zeroes is infinite. We relate their location to the combination of two problems: a confining problem producing an inverted parabola profile and the Abrikosov problem of minimizing an energy on a lattice, using Theta functions. © 2006 Elsevier Inc. All rights reserved.
Keywords :
Semi-classical analysis , Pseudo-differential calculus , Theta functions , Abrikosov lattice , Bose–Einstein condensates , Bargmann spaces , Bargmann transform
Journal title :
Journal of Functional Analysis
Serial Year :
2006
Journal title :
Journal of Functional Analysis
Record number :
839283
Link To Document :
بازگشت